Abstract

Heat transfer from irradiated metallic nanoparticles is relevant to a broad array of applications ranging from water desalination to photoacoustics. The efficacy of such processes relies on the ability of these nanoparticles to absorb the pulsed illuminating light and to quickly transfer energy to the environment. Here we show that compared to homogeneous gold nanoparticles having the same size, gold-silica core-shell nanoparticles enable heat transfers to liquid water that are faster. We reach this conclusion by considering both analytical and numerical calculations. The key factor explaining enhanced heat transfer is the direct interfacial coupling between metal electrons and silica phonons. We discuss how to obtain fast heating of water in the vicinity of the particle and show that optimal conditions involve nanoparticles with thin silica shells irradiated by ultrafast laser pulses. Our findings should serve as guides for the optimization of thermoplasmonic applications of core-shell nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.