Abstract

Enhanced boiling is one of the popular cooling schemes in thermal management due to its superior heat transfer characteristics. This study demonstrates the ability of copper inverse opal (CIO) porous structures to enhance pool boiling performance using a thin CIO film with a thickness of ∼10 μm and pore diameter of 5 μm. The microfabricated CIO film increases microscale surface roughness that in turn leads to more active nucleation sites thus improved boiling performance parameters such as heat transfer coefficient (HTC) and critical heat flux (CHF) compared to those of smooth Si surfaces. The experimental results for CIO film show a maximum CHF of 225 W/cm2 (at 16.2 °C superheat) or about three times higher than that of smooth Si surface (80 W/cm2 at 21.6 °C superheat). Optical images showing bubble formation on the microporous copper surface are captured to provide detailed information of bubble departure diameter and frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.