Abstract

As a new generation of light sources, GaN-based light-emitting diodes (LEDs) have wide applications in lighting and display. Heat dissipation in LEDs is a fundamental issue that leads to a decrease in light output, a shortened lifespan, and the risk of catastrophic failure. Here, the temperature spatial distribution of the LEDs is revealed by using high-resolution infrared thermography, and the piezo-phototronic effect is proved to restrain efficaciously the temperature increment for the first time. We observe the temperature field and current density distribution of the LED array under external strain compensation. Specifically, the temperature rise caused by the self-heating effect is reduced by 47.62% under 0.1% external strain, which is attributed to the enhanced competitiveness of radiative recombination against nonradiative recombination due to the piezo-phototronic effect. This work not only deepens the understanding of the piezo-phototronic effect in LEDs but also provides a novel, easy-to-implement, and economical method to effectively enhance thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call