Abstract

BackgroundSkeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells.MethodsPoly lactic-co-glycolic acid (PLGA) 3D printed scaffolds, which simulate the highly complex structure of extracellular matrix (ECM), were fabricated by E-jet 3D printing in this study. The scaffolds were used as platforms, providing environment that aids in growth, differentiation and other properties of C2C12 myoblast cells.ResultsThe C2C12 myoblast cells grown on the PLGA 3D printed platforms had enhanced cell adhesion and proliferation. Moreover, the platforms were able to induce myogenic differentiation of the myoblast cells by promoting the formation of myotubes and up-regulating the expressions of myogenic genes (MyHC and MyOG).ConclusionThe fabricated 3D printed platforms have excellent biocompatibility, thereby can potentially be used as functional cell culture platforms in skeletal tissue engineering and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call