Abstract

A new type of dual spin valve (DSV) structure with enhanced giant magnetoresistance (GMR) ratio is proposed, and the performance is characterized by the prototype read heads. The bottom part of DSV is kept as a synthetic pinned structure and only the top part adopts a monolayer pinned structure. The top monolayer pin DSV (TM-DSV) showed three percentage points higher GMR ratio and 20% higher /spl Delta/R value. After the mechanical lapping process, the monolayer pinned layer can be stabilized by not only sense current but also large stress induced anisotropy due to Villari effect. After the quantitative analysis, the induced stress is measured to be about 4.2/spl times/10/sup 9/ N/m/sup 2/. The bias point was tuned by adjustment of Cu spacer layer thickness using the RKKY interaction between pinned layer and free layer. There is no reliability concern related to the monolayer pinned structure. In a perpendicular magnetic recording system, TM-DSV technology could successfully demonstrate the output of 35.5 mV//spl mu/m and /spl sim/170 Gbits/in/sup 2/ density feasibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.