Abstract
Adaptation to higher temperatures would increase the environmental competitiveness of psychrophiles, organisms that thrive in low-temperature environments. Methanolobus psychrophilus, a cold wetland methanogen, 'evolved' as a mesophile, growing optimally at 30°C after subculturings, and cells grown with ample substrates exhibited higher integrity. Here, we investigated N-glycosylation of S-layer proteins, the major archaeal envelope component, with respect to mesophilic adaptation. Lectin affinity enriched a glycoprotein in cells grown at 30°C under ample substrate availability, which was identified as the S-layer protein Mpsy_1486. Four N-glycosylation sites were identified on Mpsy_1486, which exhibited different glycosylation profiles, with N94 only found in cells cultured at 30°C. An N-linked glycosylation inhibitor, tunicamycin, reduced glycosylation levels of Mpsy_1486 and growth at 30°C, thus establishing a link between S-layer protein glycosylation and higher temperature adaptation of the psychrophilic archaeon M.psychrophilus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.