Abstract

Malignant glioma is usually accompanied by vigorous angiogenesis to provide essential nutrients. An effective glioma targeting moiety should include excellent tumor-cell homing ability as well as good neovasculature-targeting efficiency, and should be highly resistant to enzyme degradation in the bloodstream. The phage display-selected heptapeptide, the glioma-initiating cell peptide (GICP), was previously reported as a ligand for the VAV3 protein (a Rho-GTPase guanine nucleotide exchange factor), which is mainly expressed on glioma cells; the stabilized heptapeptide DA7R has been shown to be the ligand of both vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1), and has demonstrated good neovasculature-targeting ability. By linking DA7R and GICP, a multi-receptor targeting molecule was obtained. The stability of these three peptides was evaluated and their targeting efficiency on tumor-related cells and models was compared. The ability of these peptides to cross the blood--tumor barrier (BTB) was also determined. The results indicate that the coupled Y-shaped peptide DA7R–GICP exhibited improved tumor and neovasculature targeting ability and had higher efficiency in crossing the BTB than either individual peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.