Abstract
In this paper, a novel approach for modelling hand-assembled random cable bundles is presented. The proposed method foresees to represent each cable position in the bundle via analytical polynomial curves, assuring smoothness of trajectories, as well as flexibility in accounting for bundle randomness. The generated bundle geometry is used in combination with full-wave and transmission-line based simulation, providing accurate predictions of the noise induced at the bundle terminals due to crosstalk between wires and due to an external EM field. The proposed examples, run in comparison with the more computationally-efficient yet approximate model in [1], prove the validity of the proposed generation algorithm and the need for accurate representation and discretization of the bundle if reliable predictions in a wide frequency interval are the target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.