Abstract

Resolving semantic heterogeneity across distinct data sources remains a highly relevant problem in the GIS domain requiring innovative solutions. Our approach, called GSim, semantically aligns tables from respective GIS databases by first choosing attributes for comparison. We then examine their instances and calculate a similarity value between them called entropy-based distribution (EBD) by combining two separate methods. Our primary method discerns the geographic types from instances of compared attributes. If successful, EBD is calculated using only this method. GSim further facilitates geographic type matching by using latlong values to further disambiguate between multiple types of a given instance and applying attribute weighting to quantify the uniqueness of mapped attributes. If geographic type matching is not possible, we then apply a generic schema matching method, independent of the knowledge domain, which employs normalized Google distance. We show the effectiveness of our approach over the traditional approaches across multijurisdictional datasets by generating impressive results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.