Abstract

Gene therapy aims to treat patients by altering or controlling gene expression. The field of gene therapy has had increasing success in recent years primarily using viral-based approaches; however, there is still significant interest toward the use of polymeric materials due to their potential as flexible, low-cost scaffolds for gene delivery that do not suffer the mutagenesis and immunogenicity concerns of viral vectors. To address the challenges of efficiency and biocompatibility, a series of zwitterion-like polyethylenimine derivatives (zPEIs) were produced via the succinylation of 2-11.5% of polyethylenimine (PEI) amines. With increasing modification, zPEI polyplexes exhibited decreased serum-protein aggregation and dissociated more easily in the presence of a competitor polyanion when compared to unmodified PEI. Surprisingly, the gene delivery mediated in the presence of serum showed that succinylation of as few as 2% of PEI amines resulted in transgene expression 260- to 480-fold higher than that of unmodified PEI and 50- to 65-fold higher than that of commercial PEI-PEG2k in HEK293 and HeLa cells, respectively. Remarkably, the same zPEIs also produced 16-fold greater efficiency of CRISPR/Cas9 gene knock-in compared to unmodified PEI in the presence of serum. In addition, we show that 2% succinylation does not significantly decrease polymer/DNA binding ability or serum protein interaction to a significant extent, yet this small modification is still sufficient to provide a remarkable increase in transgene expression and gene knock-in in the presence of serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.