Abstract

We explain the observation by Candelas and Font that the Dynkin diagrams of non-abelian gauge groups occurring in type IIA and F-theory can be read off from the polyhedron Δ ∗ that provides the toric description of the Calabi-Yau manifold used for compactification. We show how the intersection pattern of toric divisors corresponding to the degeneration of elliptic fibers follows the ADE classification of singularities and the Kodaira classification of degenerations. We treat in detail the cases of elliptic K3 surfaces and K3 fibered threefolds where the fiber is again elliptic. We also explain how even the occurrence of monodromy and non-simply laced groups in the latter case is visible in the toric picture. These methods also work in the fourfold case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.