Abstract

We report enhanced gate stack stability in GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs) by using a bilayer SiNx as the gate dielectric. To obtain the bilayer gate dielectric scheme, a thin Si-rich SiNx interlayer was deposited before a high-resistivity SiNx layer by low pressure chemical vapor deposition. The Si-rich SiNx can effectively suppress the trapping phenomenon at the interface of the dielectric/AlGaN barrier. The upper high-resistivity SiNx layer can greatly block the gate leakage current to enable a large gate swing. Compared with the MISHEMTs using a single Si-rich or high-resistivity SiNx layer, the MISHEMTs with a bilayer gate dielectric take the advantages of both, realizing a gate stack with a stable threshold voltage and low leakage current. These results thus present great potential for developing high-performance GaN MISHEMTs using the bilayer SiNx gate dielectric scheme for highly efficient power applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call