Abstract

In the present work, the effect of indium (In) doping on the various properties of the zinc oxide (ZnO) thin films was investigated. The pure and 5% In doped ZnO thin films have been synthesized via the successive ionic layer adsorption and reaction (SILAR) method on glass substrates. The X-Ray Diffraction (XRD) analysis clearly indicated the well-crystalline wurtzite structure of ZnO and 5% In-ZnO films. The Scanning Electron Microscopy (SEM) study depicted the formation of granular and nanoflower structures on the surface of the synthesized films. The band-gap energy and the grain size values of 5% In-ZnO were found to be 3.32 eV and 22.33 nm, respectively. Also, the indium incorporation into ZnO made a significant change on the structural, morphological properties, and enhanced the gas-sensing performance of ZnO host material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.