Abstract

In this study, we discuss a method to embed PEDOT:PSS into DNA with a designated concentration of PEDOT:PSS and construction of PEDOT:PSS-embedded DNA thin films. In order to shed light on the interaction between PEDOT:PSS and DNA, optical spectroscopy measurements were performed. DNA-PEDOT:PSS thin films showed a broad absorption band around 800 nm which was associated with PEDOT:PSS. The electrical properties of DNA-PEDOT:PSS thin films were assessed. A significant enhancement in current for DNA-PEDOT:PSS thin films DNA was observed which agreed with the decrement in band gap of DNA-PEDOT:PSS thin films. For the energy storage capability and dielectric constant of DNA-PEDOT:PSS thin films, capacitance measurements were conducted. Frequency-dependent capacitance indicated enhancement in the capacitance and dielectric constant by electric polarization of PEDOT:PSS in a DNA thin film. Our approach may assist in development of various biosensors and electronic devices with specific functionalities based on biomaterials and conducting polymer complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.