Abstract

This study investigates the hypothesis that inhibition of nucleoside transport during hypothermic storage elevates tissue adenosine (ADO) content and improves the function of the isolated rat heart. The hearts, flushed with a cardioplegic solution containing varying concentrations (0-100 nM) of a nucleoside transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI), were immersion-stored at 0 degrees C for 9 hr. Function was assessed after 30 min of working reperfusion. Function of unstored fresh hearts served as controls and poststorage recovery is reported as percentage of control function. Poststorage heart rate in all groups returned to control level after reperfusion. Recovery of other functional parameters in the no-NBTI group was as follows: aortic flow (AF), 56.2 +/- 4.6%; coronary flow (CF), 53.9 +/- 3.2%; cardiac output (CO), 55.5 +/- 4.0%; systolic pressure, 81.6 +/- 2.5%; work, 47.0 +/- 4.2%; and coronary vascular resistance (CVR), 157.1 +/- 7.8% of control. NBTI improved functional recovery in a dose-dependent fashion; the maximal improvement was seen at a dose of 5 nM, in which the recovery was: AF, 78.1 +/- 3.4%; CF, 73.5 +/- 4.4%; CO, 76.7 +/- 3.6%; work, 70.7 +/- 5.0%; and CVR, 127.5 +/- 4.5% of control (P < 0.05 vs. no-NBTI). The ADO A1-receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (0.1 microM) blocked the effects of 5 nM NBTI; the recovery of AF, CF, CO, work, and CVR decreased to 62.8 +/- 8.0%, 58.3 +/- 5.0%, 61.5 +/- 3.9%, 54.4 +/- 4.5%, and 163.8 +/- 12.7% of control, respectively (P < 0.05 vs. 5 nM NBTI). Tissue ADO content in 5 nM NBTI hearts at the end of storage was 0.075 +/- 0.025 mumol/g dry wt, which was significantly elevated from 0.016 +/- 0.004 mumol/g dry wt in no-NBTI hearts. Purine release during initial reperfusion was delayed in 5 nM NBTI hearts, indicating the inhibition of nucleoside transport by NBTI. But NBTI treatment did not improve end-storage or end-reperfusion myocardial ATP. In conclusion, the addition of NBTI to cardioplegic solution enhanced tissue ADO and improved poststorage function of the hypothermically stored rat heart. The effect is ADO A1-receptor mediated without invoking energy conservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call