Abstract

We show that nonadiabatic, resonant amplitude- and phase-modulated pulses can be frequency converted with greater efficiency than adiabatic resonant pulses in a double Λ system, interacting with two strong cw beams on one side of the system, and a weak pulsed probe on the other. Indeed, in this double EIT (electromagnetically induced transparency) configuration, conversion efficiencies close to unity, similar to those achieved using highly detuned pulses, can be obtained using highly nonadiabatic resonant pulses. The distance at which the maximum conversion occurs is shorter than in a coherently-prepared Λ system. This counteracts the increased absorption that occurs in the double EIT configuration, so that both produce similar conversion efficiencies. The absorption experienced by matched nonadiabatic pulses in the double EIT system, at all propagation distances, can be overcome by superimposing the nonadiabatic pulses as amplitude modulations on carrier fields. Thus we demonstrate the formation of adiabatons in the double EIT system, and of diabatons in both the coherently-prepared Λ system and the double EIT system. Both the diabatons and adiabatons satisfy pulse-matching conditions. In addition, the asymptotic amplitude of the complementary amplitude modulations is proportional to the ratio of the pump to probe carrier Rabi frequencies, and is the same in each of the configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.