Abstract

Room-temperature ultraviolet (UV) luminescence was investigated for the atomic layer deposited ZnO films grown on silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma. For films deposited at 200 °C, an intensive UV emission corresponding to free-exciton recombination (~3.31 eV) was observed with a nearly complete suppression of the defect-associated broad visible range emission peak. On the other hand, for ZnO films grown at 25 °C, albeit the appearance of the defect-associated visible emission, the UV emission peak was observed to shift by ~60 meV to near the direct band edge (3.37 eV) recombination emission. The high-resolution transmission electron microscopy (HRTEM) showed that the ZnO films obtained at 25 °C were consisting of ZnO nanocrystals with a mean radius of 2 nm embedded in a largely amorphous matrix. Because the Bohr radius of free-exictons in bulk ZnO is ~2.3 nm, the size confinement effect may have occurred and resulted in the observed direct band edge electron-hole recombination. Additionally, the results also demonstrate order of magnitude enhancement in emission efficiency for the ZnO/Si-NP structure, as compared to that of ZnO directly deposited on Si substrate under the same conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.