Abstract

A review of the potential toughening and failure mechanisms for ceramic laminate materials is presented. An integrated approach to the design of ceramic laminates incorporating biaxial residual stresses for specific applications is outlined. Restrictions placed on the laminate architecture to avoid spontaneous transverse cracking of the tensile layer are discussed. The phenomena of edge cracking and crack bifurcation are considered with reference to elastic moduli, Poisson's ratio, mismatch in thermal expansion coefficients, temperature gradient and laminate architecture. The use of compressive layers to produce a material that exhibits a threshold strength and criteria for increasing the critical applied stress below which failure will not occur are reported. A single edge V-notched beam (SEVNB) test geometry was used to measure crack growth resistance (R curve) behaviour of multilayer Si3N4/Si3N4–TiN composites. Fracture mechanics weight function analysis was applied to predict the R curve behaviour of multilayer composites having a stepwise change in composition. A conservative, non-optimised laminate design exhibiting apparent fracture toughness in excess of 17 MPa m1/2 is reported, in excellent agreement with the weight function analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.