Abstract

We study the forward stimulated Brillouin scattering process in a suspended silicon slot waveguide Bragg grating. Full-vectorial formalism is applied to analyze the interplay of electrostriction and radiation pressure. We show that radiation pressure is the dominant factor in the proposed waveguide. The Brillouin gain strongly depends on the structural parameters and the maximum value in the order of 106 W−1 m−1 is obtained in the slow light regime, which is more than two orders larger than that of the stand-alone strip and slot waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.