Abstract

M-OMS-2 materials (M = K+, Cu2+, Co2+) were prepared by an uncomplicated reflux method, and the cryptomelane crystalline structure was confirmed by X-ray diffraction patterns. Element analysis recorded ~56 - ~59 wt.% of Mn in the three synthesized samples and ~2.8 wt.% loadings of dopants over Co-OMS-2 and Cu-OMS-2 materials. A titration method valued the average oxidation states of manganese at 3.60, 3.71 and 3.77 for K-OMS-2, Co-OMS-2 and Cu-OMS-2, respectively. In comparison with K-OMS-2, Co and Cu dopants depicted a significant enhancement catalytic activity in removal of formaldehyde at low (5%) and high (65 %) relative humidity (RH). Cu-OMS-2 showed the highest catalyst performance with ~90 % of formaldehyde conversion at 150 °C, 65% RH, whereas only ~40 % (for Co-OMS-2) and ~26 % (for K-OMS-2) of that were observed. The finding results promised a potential Cu-OMS-2 material for designed low-costly catalyst in formaldehyde removal at a wide range of RH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.