Abstract

As one of the crystal phases of titania, TiO2(B) was first utilized as a catalyst carrier for the oxidation of formaldehyde (HCHO). The mesoporous TiO2(B) loaded with Pt nanoparticles enhanced the HCHO oxidation reaction whose reaction rate was 4.5–8.4 times those of other crystalline TiO2-supported Pt catalysts. Simultaneously, Pt/TiO2(B) exhibited long-term stable HCHO oxidation performance. The structural characterization results showed that in comparison with Pt/anatase, Pt/TiO2(B) had more abundant hydroxyls, facilitating increasing the content of oxygen species. Studies on the role of hydroxyls in HCHO oxidation of Pt/TiO2(B) illustrated that synergistic involvement of terminally bound hydroxyls and bridging hydroxyls in HCHO oxidation accelerated the transformation from HCHO to formate via dioxymethylene. Moreover, hydroxyls could avoid the accumulation of excessive formate on Pt/TiO2(B) and promote the rapid oxidation of CO. Accordingly, the hydroxyl groups could accelerate each substep of formaldehyde oxidation, which enabled Pt/TiO2(B) to exhibit excellent formaldehyde oxidation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call