Abstract

Rational control of the luminescent properties of ligand-protected coinage metal clusters has long been pursued but remains challenging. Here we explore the crucial structural and electronic factors governing the fluorescence of a diphosphine-protected [Au13(dppe)5Cl2]3+ cluster by time-dependent density functional theory calculations. By substituting the central Au atom with group 5 to group 11 transition metal atoms, the emission wavelength is adjustable from red to blue, accompanied by enhanced fluorescence intensity compared with the undoped cluster. The evolution of light-emitting behavior upon doping and the corresponding roles of the dopant, Au cage, ligands, and their interplay are interpreted at the electronic structure level. In particular, strong dopant-Au cage interaction associated with large electron-hole overlap on the dopant are is a key factor to endow large emission energy and intensity. These theoretical results provide vital guidance for designing atomically precise nanoclusters with visible fluorescence and high quantum yield for practical uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.