Abstract

At present, enzyme-linked immunosorbent assay (ELISA) is considered to be the most appropriate approach in clinical biomarker detection, with good specificity, low cost, and straightforward readout. However, unsatisfactory sensitivity severely hampers its wide application in clinical diagnosis. Herein, we designed a new kind of enhanced fluorescence enzyme-linked immunosorbent assay (FELISA) based on the human alpha-thrombin (HAT) triggering fluorescence "turn-on" signals. In this system, detection antibodies (Ab2) and HAT were labeled on the gold nanoparticles (AuNPs) to form the detection probes, and a bisamide derivative of Rhodamine110 with fluorescence quenched served as the substrate of HAT. After the sandwich immunoreaction, HAT on the sandwich structure could catalyze the cleavage of the fluorescence-quenched substrate, leading to a strong fluorescence signal for sensing ultralow levels of alpha fetoprotein (AFP) and hepatitis B virus surface antigen (HBsAg). Under the optimized reaction conditions, AFP and HBsAg were detected at the ultralow concentrations of 10-8 ng mL-1 and 5 × 10-4 IU mL-1, respectively, which were at least 104 times lower than those of the conventional fluorescence assay and 106 times lower than those of the conventional ELISA. In addition, we further discussed the efficiency of the sensitive FELISA in clinical serum samples, showing great potential in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call