Abstract

We study the position fluctuations of interacting particles aligned in a finite cell that avoid any crossing in equilibrium with a thermal bath. The focus is put on the influence of the confining force directed along the cell length. We show that the system may be modeled as a 1D chain of particles with identical masses, linked with linear springs of varying spring constants. The confining force may be accounted for by linear springs linked to the walls. When the confining force range is increased toward the inside of the chain, a paradoxical behavior is exhibited. The outermost particles fluctuations are enhanced, whereas those of the inner particles are reduced. A minimum of fluctuations is observed at a distance of the cell extremities that scales linearly with the confining force range. Those features are in very good agreement with the model. Moreover, the simulations exhibit an asymmetry in their fluctuations which is an anharmonic effect. It is characterized by the measurement of the skewness, which is found to be strictly positive for the outer particles when the confining force is short ranged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.