Abstract

The roll-out of a flexible ramping product provides independent system operators (ISOs) with the ability to address the issues of ramping capacity shortage. ISOs procure flexible ramping capability by committing more generating units or reserving a certain amount of headrooms of committed units. In this paper, we raise the concern of the possibility that the procured flexible ramping capability cannot be deployed in real-time operations due to the unit shut-down in a look-ahead commitment (LAC) procedure. As a solution to the issues of ramping capacity shortage, we provide a modified ramping product formulation designed to improve the reliability and reduce the expected operating cost. The trajectories of start-up and shutdown processes are also considered in determining the ramping capability. A new optimization problem is formulated using mixed integer linear programming (MILP) to be readily applied to the practical power system operation. The performance of this proposed method is verified through simulations using a small-scale system and IEEE 118-bus system. The simulation results demonstrate that the proposed method can improve the generation scheduling by alleviating the ramping capacity shortages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call