Abstract

Fibrous surfaces in nature have already exhibited excellent functions that are normally ascribed to the synergistic effects of special structures and material properties. The honey bee tongue, foraging liquid food in nature, has a unique segmented surface covered with dense hairs. Since honey bees are capable of using their tongue to adapt to possibly the broadest range of feeding environments to exploit every possible source of liquids, the surface properties of the tongue, especially the covering hairs, would likely represent an evolutionary optimization. In this paper, we show that their tongue hairs are stiff and hydrophobic, the latter of which is highly unexpected as the structure is designed for liquid capturing. We found that such hydrophobicity can prevent those stiff hairs from being adhered to the soft tongue surface, which could significantly enhance the deformability of the tongue when honey bees feed at various surfaces and promote their adaptability to different environments. These findings bridge the relationship between surface wettability and structural characteristics, which may shed new light on designing flexible microstructured fiber systems to transport viscous liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.