Abstract

Tight fixation between bone and implant materials is of great importance for a successful outcome of procedures such as total knee arthroplasty (TKA) and total hip arthroplasty (THA). Titanium fiber mesh is an attractive structure for the establishment of tight fixation between bone and implant by bone ingrowth into the spaces among the fibers. Enhancement of bone ingrowth is desired not only for tight fixation but also for a fast recovery. Our hypothesis is that just the presence of hydroxyapatite (HA) particles ensures improved bone ingrowth, and that long-term stability can be obtained by mechanical anchoring of bone in the spaces among titanium fibers. In this study, we examine our hypothesis by in vivo experiment using dog femur. HA particles were incorporated in titanium fiber mesh coated on titanium alloy rod by dipping in a slurry of HA with hydroxy-propyl-cellulose in an ethanol solution. Specimens were implanted for 3, 5, and 8 weeks, and were then compared with the results from specimens without the use of HA. Bonding strength was evaluated by push-out test, and histomorphometric measurements were made with analysis software to calculate the average value of bone ingrowth. A significantly higher bonding strength was observed for the specimens with HA-incorporated implant at 3 and 5 weeks, and larger bone ingrowth deep inside the titanium fiber mesh was measured at 3 weeks. Our proposed method has the additional advantage of not requiring a high temperature that may result in changes in characters of HA powder such as phase transition, grain growth, and decomposition. Moreover, this technique of HA powder incorporation without high-temperature treatment allows the use of several types of metallic fiber mesh, as well as the application to fiber mesh made of organic polymers. We conclude that this simple modification of titanium fiber mesh with HA powder can improve the fixation of implant to bone in the initial stage after operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.