Abstract

This work aims to assess the influence of different finite element formulations in the performance and quality of solution obtained by numerical simulation in the analysis of tailor-welded hydroformed tubular parts. Tube hydroforming represents a cost effective forming process for high-strength, low weight products on, as an example, automotive and airspace applications. On the other side, the use of tailor-welding in order to obtain custom-made combinations of thicknesses and materials - leading to a wide variety of user-defined products - can be introduced into conventional tubular hydroforming processes in order to further improve the applicability range of the later process. The main goal of the present work is to describe the state-of-the-art in the field, focusing on distinct finite element formulations and providing guidelines for the simulation of tubular hydroforming process combined with tailor-welded joining techniques. Hexahedral solid and solid-shell enhanced assumed strain elements, either with reduced and full numerical integration procedures, are analyzed in order to infer about the potentialities of the combined forming technology. Material characterization of the heat affected zone is included and the influence of finite element modeling on defects onset and prediction during forming is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call