Abstract

Thermoelectric (TE) materials research plays a vital role in heat-to-electrical energy conversion and refrigeration applications. Bismuth-antimony (Bi-Sb) alloy is a promising material for thermoelectric cooling. Herein, a high figure of merit, ZT, near 0.6 at cryogenic temperatures (100–150 K) has been achieved in melt-spun n-type Bi85Sb15 bulk samples consisting of micron-size grains. The achieved ZT is nearly 50% higher than polycrystalline averaged single crystal ZT of ~0.4, and it is also significantly higher than ZT of less than ~0.3 measured below 150 K in Bi-Te alloys commonly used for cryogenic cooling applications. The improved thermoelectric properties can be attributed to the fine-grained microstructure achieved from rapid solidification, which not only significantly reduced the thermal conductivity but also mitigated a segregation effect. A record low thermal conductivity of ~1.5 W m−1 K−1 near 100 K was measured using the hot disk method. The thermoelectric properties for this intriguing semimetal-semiconductor alloy system were analyzed within a two-band effective mass model. The study revealed a gradual narrowing of the band gap at increasing temperature in Bi-Sb alloy for the first time. Magneto-thermoelectric effects of this Bi-Sb alloy further improved the TE properties, leading to ZT of about 0.7. The magneto-TE effect was further demonstrated in a combined NdFeB/BiSb/NdFeB system. The compactness of the BiSb-magnet system with high ZT enables the utilization of magneto-TE effect in thermoelectric cooling applications.

Highlights

  • Renewable energy has become an important topic in modern society for addressing sustainable global energy demand

  • The Sb concentration distribution for the sample after melt-spinning and spark plasma sintering showed a much smaller range of Sb concentration variation, under 1 at.% Sb, as shown in Fig. 3(b), indicating an effective homogenization was achieved through rapid cooling by melt-spinning

  • We found nano-size particles that seem to have been embedded among the micron-size matrix grains

Read more

Summary

Introduction

Renewable energy has become an important topic in modern society for addressing sustainable global energy demand. The effects were explained on the basis of the transverse-transverse thermo-galvanomagnetic effects which are the results of co-action between the Hall effect, Nernst effect and Righi-Leduc effect They reported ZT ~ 0.55 along the trigonal axis of Bi-Sb in the absence of a magnetic field around 80 K but ZT peaked at a value of ~0.4 along the binary/bisectrix axis at 150 K. Due to the large temperature gap between the solidus and liquidus lines in the Bi-Sb phase diagram, significant phase segregation always occurs under normal cooling conditions, preventing the formation of a homogeneous alloy ingot upon cooling down from the liquid mixture phase To overcome this issue, mechanical alloying has been preferentially used by researchers in order to improve the compositional homogeneity of the samples[21,22]. One group reported using melt-spinning for a higher cooling rate, which yielded variable properties as a function of linear rotation speed, indicating that the TE properties might not be optimized[20]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call