Abstract

Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

Highlights

  • One-dimensional (1-D) and quasi–1-D nanostructures, due to their high crystal quality, large aspect ratio and sharp tips are well known as promising candidates for applications related to cold cathode, field emission of electrons [1]

  • We report the effects of Ar plasma treatment on the crystal structure and morphology of a-Fe2O3 nanoflakes

  • Before plasma treated After 100W plasma treated Fe

Read more

Summary

Introduction

One-dimensional (1-D) and quasi–1-D nanostructures, due to their high crystal quality, large aspect ratio and sharp tips are well known as promising candidates for applications related to cold cathode, field emission of electrons [1]. To improve the field-emission properties of nanostructures, several methods were employed before and after the synthesis process, for example, increasing the carrier concentration by a heavily ion doping method [3] or modifying the apex geometry by gas plasma treatment [4]. Experiments have shown that emission current density of carbon nanotubes could be effectively enhanced by plasma treatments, which are capable of functionalizing and modifying the surface structure of carbon nanotubes [5].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.