Abstract

Abstract Dilute magnetic semiconductors with extended ferromagnetic properties are heavily sought for use in next-generation spintronic devices. In this work, we show that co-doping 3 at% Al into Zn 0.44 Gd 0.03 O 0.50 nanoparticles can change their magnetic nature from weak to well-defined ferromagnetism (FM) at room temperature. X-ray diffraction (XRD), selected area electron diffraction (SAED), and Raman spectroscopy show that the Gd and Al atoms replaced the Zn atoms in the ZnO crystal lattice without forming other impurity phases. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses of the suspensions revealed the high crystallinity and monodispersity of the 34–44 nm nanoparticles. The undoped and Gd-doped ZnO samples showed diamagnetism and weak FM, while the (Gd, Al) co-doped samples exhibited robust room temperature FM. The enhanced FM of the Zn 0.44 Gd 0.03 Al 0.03 O 0.50 sample can be achieved by increasing the carrier concentration via Al co-doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.