Abstract

In this study, NaNbO3 with average grain size of ~50 nm and KNbO3 with average grain size of ~300 nm nanocrystals are prepared by the water-based citrate precursor sol-gel process. However, the KNbO3 sample exhibits better photocatalytic performance than that of the NaNbO3 sample by Rh B degradation experiment. By Rietveld refinements and piezoelectric displacement measurements, the KNbO3 with the space group of Bmm2 is ferroelectric while the NaNbO3 with the space group of Pbma is antiferroelectric. The polarization-modulated built-in electric fields in the ferroelectric KNbO3 nanoparticles can efficiently enhance the separation of photo-generated charge carries and thus improve the photocatalytic activity. However, there is no internal electric field in the antiferroelectric grain because of the antiparallel spontaneous polarization in the adjacent unit cell. Therefore, KNbO3 exhibits better oxidizing ability of organic dyes than NaNbO3. The ferroelectric KNbO3 nanoparticles exhibit an optimum photocatalytic performance for a complete degradation of Rh B in 100 min under UV-Vis light irradiation with auxiliary ultrasonic excitation. This study demonstrates that the perovskite-type ferroelectric nanocrystals are potentially to design high-performance catalysts for degradation of contaminant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.