Abstract

Microorganisms harvest energy from agricultural waste by degrading its structure. By comparing with Trichoderma reesei QM6a in cellulase production, straw deconstruction and transcriptome response, Trichoderma asperellum T-1 was identified to be prioritized for the fermentation of natural straw. Cellulase activity of T-1 was 50%–102% higher than QM6a. And the degradation rate of hemicellulose and ligin in wheat straw by T-1 reached 40% and 42%. Time-driven changes in the gene expression of extracellular proteins involved in polysaccharide, xylan, and hemicellulose metabolism and hydrolysis indicated that T-1 positively responded in both solid state fermentation and submerged fermentation for lignocellulose degradation. A significantly enriched category encoding carbohydrate-binding modules is considered critical for the deconstruction of the natural structure by T-1. The findings highlight the superiority of T. asperellum T-1 in straw fermentation, base on which, the construction of efficient microbial agents is expected to enhance the utilization of biomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call