Abstract

Metal-based Fenton-like catalysts usually activate H2O2 to produce free radicals (•OH and O2•−) for the degradation of organic pollutants. However, a catalytic reaction dominated by free radicals is easily interfered with by various inorganic anions and water matrices. Herein, g-C3N4-wrapped copper phosphide (CuxP), as a highly efficient Fenton-like catalyst, was successfully synthesized by a simple low-temperature phosphidation method. The CuxP/g-C3N4 catalyst exhibited excellent catalytic ability for the removal of various organic contaminants over a wide pH range of 3–11. In addition, the catalyst exhibited strong anti-interference ability toward various inorganic anions (Cl–, SO42–, NO3–, F–, H2PO4–, HCO3– and CO32–) and water matrices (lake water, river water, tap water and simulated water matrix). The reasons for this performance were analyzed by verifying the mechanism of the catalytic reaction. Compared to the pure CuxP catalyst, the CuxP/g-C3N4 composite possessed good catalytic stability. The enhanced and deactivated mechanisms of the CuxP/g-C3N4 catalyst were systematically analyzed by a series of characterization techniques. A possible reaction mechanism was also proposed based on the experimental results. This work provides new insights into designing highly efficient metal-based Fenton-like catalysts with strong anti-interference ability to practically treat wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.