Abstract
Multivariate time series (MTS) learning-based dynamic early warning (DEW) shows promising potential in preventing power systems from underlying risks. However, as a fundamental and essential step for constructing DEW models, performing efficient feature selection (FS) within high-dimensional candidate features (HDCF) of power grids is challenging, especially considering the MTS format and security-dominated characteristics of electric utilities. This paper proposes an enhanced feature combinational optimization (FCO) method to select beneficial variables for MTS-based DEW models within the HDCF of power grids. First, to identify features that contain valuable temporal patterns for DEW, a wrapper FCO framework combined MTS learning and evolutionary computation is designed. Then, to improve the FCO efficiency and solution quality when facing HDCF, a maximal information coefficient (MIC) based enhancement scheme is developed, semi-guiding the FCO initialization and evolution. Finally, by integrating MIC and iterative search, hybrid end-to-end FS is achieved. Experiments on the synthetic data from the IEEE 39-bus system and the real-world data acquired from a provincial power grid in China show that, via the MIC semi-guidance, the proposed method possesses higher FCO efficiency and better results within HDCF compared to wrapper benchmarks. Compared to filter benchmarks, it is more compatible with supervised MTS and can consider the practical performance of features by interacting with the embedded learning models. Results also verify that, with the features from the proposed method, more accurate DEW models can be obtained to predict the target event in early stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.