Abstract

This paper investigates the problem of incipient fault detection and diagnosis (FDD) in wind energy conversion systems (WECS) using an innovative and effective approach called the ensemble learning-sine cosine optimization algorithm (EL-SCOA). The evolved strategy involves two primary steps: first, a sine-cosine algorithm is used to extract and optimize features in order to only select the most descriptive ones. Second, to further improve the capability, thereby providing the highest accuracy performance, the newly gathered dataset is introduced as input to an ensemble learning paradigm, which merges the benefits of boosting and bagging techniques with an artificial neural network classifier. The essential goal of the developed proposal is to discriminate between the diverse operating conditions (one healthy and six faulty conditions). Three potential and frequent types of faults that can affect the system behaviors including short-circuit, open-circuit, and wear-out are considered and thereby injected at diverse locations and sides (grid and generator sides) in order to evaluate the availability and performance of the proposed technique when compared to the conventional FDD methods. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. The acquired outcomes demonstrate the efficiency of the suggested diagnostic paradigm compared to conventional FDD techniques (accuracy rate has been successfully achieved 98.35%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.