Abstract
The role of nerve growth factor (NGF) in neurotrophic support for the extrinsic innervation of the nasal and oral mucosae was investigated in keratin 14 (K14) - NGF transgenic mice in which NGF was overexpressed in K14-synthesizing cells. K14 immunoreactivity was localized in the epithelial basal cells of the whisker pad skin, the hard palate, the floor of the ventral meatus, and the anterior tongue that are stratified squamous epithelia, and also in basal cells of the vomeronasal, olfactory, and respiratory epithelia that are non-stratified epithelia. In transgenic mice, NGF expression was identified and confined primarily to the basal cells of stratified epithelia. The nasal mucosae including the vomeronasal, olfactory, and respiratory mucosae, and the glands associated with the vomeronasal organ received a greater innervation of protein gene product 9.5-immunoreactive extrinsic fibers in transgenic animals than nontransgenic controls. An increased density of calcitonin gene-related peptide-immunoreactive extrinsic fibers was observed in the nonsensory epithelia of the vomeronasal organ, the olfactory sensory and respiratory epithelia in transgenic animals. Our results indicated that the hyperinnervation of the nasal and oral mucosae by extrinsic neurons is due at least partially to target-derived NGF synthesis and release by K14-expressing basal cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.