Abstract

The phenomenon of extraordinary optical transmission (EOT) caused by light through metallic nanohole arrays has attracted significant attention due to its potential applications for monolithic color filters and ultrasensitive label-free biosensing. However, the EOT spectra of these nanohole arrays have multiple resonance peaks that are spectrally close to each other due to the multiple resonance modes generated by different media on the upper and lower surfaces of metal. In addition, owing to the absorption loss of metal and the scattering of holes, the EOT resonance peaks have low transmission coefficient for practical applications. In this work, utilizing a tapered nanohole arrays structure which is stacked by multiple cylindrical holes with the same depth but different radii, we show that tapered nanohole arrays can effectively suppress the excitation of multiple resonance peaks, and a single EOT peak emerges in the transmission spectrum and simultaneously exhibits significantly enhanced transmission (∼7 times) and narrow linewidth (∼15 nm). The enhanced EOT of tapered nanohole arrays can be also found in other wavelength regions and plasmonic materials. Benefiting from isolated transmission peak, high transmission efficiency and extremely narrow linewidth, a highly sensitive plasmonic nanosensor with sensitivity of 1580 nm/RIU and figure of merit of 105 can be attained. We believe that the tapered nanohole structure would enable applications for ultrasensitive sensors, switches and efficient filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call