Abstract

ObjectivesThe goal of this study was to evaluate the cellular and extracellular composition of human coronary arterial in-stent restenosis after various periods of time following stent deployment. BackgroundNeointimal in-growth rather than stent recoil is thought to be important for coronary arterial in-stent restenosis. There is only limited data on the cellular and extracellular composition changes with time after stent deployment. MethodsWe analyzed 29 coronary arterial in-stent restenotic tissue samples (14 left anterior descending coronary artery, 10 right coronary artery, and 5 left circumflex artery) retrieved by using directional coronary atherectomy from 25 patients at 0.5 to 23 (mean, 5.7) months after deployment of Palmaz-Schatz stents employing histochemical and immunocytochemical techniques. ResultsCell proliferation was low (0% to 4%). Myxoid tissue containing extracellular matrix (ECM) enriched with proteoglycans was found in 69% of cases and decreased over time after stenting. Cell-depleted areas were found in 57% of cases and increased with time after stenting. Versican, biglycan, perlecan, and hyaluronan were present with varying individual distributions in all samples. Positive transforming growth factor-β1 staining was found in 80% of cases. Immunostaining with alpha-smooth muscle actin identified the majority of cells as smooth muscle cells with occasional macrophages present (≤12 cells per section). ConclusionsThese data suggest that enhanced ECM accumulation rather than cell proliferation contribute to later stages of in-stent restenosis. Balloon angioplasty of in-stent restenosis may, therefore, fail due to ECM changes during: 1) additional stent expansion, 2) tissue extrusion out of the stent, or 3) tissue compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call