Abstract

Recently we showed that the level of mitochondrial mRNA was decreased prior to neuronal death induced by glutamate. As the level of mRNA is regulated by ribonuclease (RNase), we examined RNase activity and its expression in the primary cultures of cortical neurons after glutamate treatment in order to evaluate the involvement of RNase in glutamate-induced neuronal death. A 15-min exposure of the cultures to glutamate at the concentration of 100 μM produced marked neuronal damage (more than 70% of total cells) at 24-h post-exposure. Under the experimental conditions used, RNA degradation was definitely observed at a period of 4–12-h post-exposure, a time when no damage was seen in the neurons. Glutamate-induced RNA degradation was completely prevented by the N-methyl- d-aspartic acid (NMDA) receptor channel blocker MK-801 or the NR2B-containing NMDA receptor antagonist ifenprodil. Glutamate exposure produced enhanced expression of RNase L at least 2–12 h later, which was absolutely abolished by MK-801. However, no significant change was seen in the level of RNase H1 mRNA at any time point post-glutamate treatment. Immunocytochemical studies revealed that RNase L expressed in response to glutamate was localized within the nucleus, mitochondria, and cytoplasm in the neurons. Taken together, our data suggest that expression of RNase L is a signal generated by NMDA receptor in cortical neurons. RNase L expression and RNA degradation may be events that cause neuronal damage induced by NMDA receptor activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call