Abstract
Decreased human epididymis protein 4 (HE4) plasma levels were reported in cystic fibrosis (CF) patients under CFTR potentiator ivacaftor therapy, which inversely correlated with lung function improvement. In this study, we investigated whether HE4 expression was affected via modulation of CFTR function in CF bronchial epithelial (CFBE) cells in vitro. HE4 protein levels were measured in the supernatants of CFBE 41o− cells expressing F508del-CFTR or wild-type CFTR (wt-CFTR) after administration of lumacaftor/ivacaftor or tezacaftor/ivacaftor, while HE4 expression in CFBE 41o− cells were also analyzed following application of adenylate cyclase activators Forskolin/IBMX or CFTRinh172. The effect of all of these compounds on CFTR function was monitored by the whole-cell patch-clamp technique. Induced HE4 expression was studied with interleukin-6 (IL-6) in F508del-CFTR CFBE 41o− cells under TNF-α stimulation for 1 h up to 1 week in duration. In parallel, plasma HE4 was determined in CF subjects homozygous for p.Phe508del-CFTR mutation receiving lumacaftor/ivacaftor (Orkambi®) therapy. NF-κB-mediated signaling was observed via the nuclear translocation of p65 subunit by fluorescence microscopy together with the analysis of IL-6 expression by an immunoassay. In addition, HE4 expression was examined after NF-κB pathway inhibitor BAY 11-7082 treatment with or without CFTR modulators. CFTR modulators partially restored the activity of F508del-CFTR and reduced HE4 concentration was found in F508del-CFTR CFBE 41o− cells that was close to what we observed in CFBE 41o− cells with wt-CFTR. These data were in agreement with decreased plasma HE4 concentrations in CF patients treated with Orkambi®. Furthermore, CFTR inhibitor induced elevated HE4 levels, while CFTR activator Forskolin/IBMX downregulated HE4 in the cell cultures and these effects were more pronounced in the presence of CFTR modulators. Higher activation level of baseline and TNF-α stimulated NF-κB pathway was detected in F508del-CFTR vs. wt-CFTR CFBE 41o− cells that was substantially reduced by CFTR modulators based on lower p65 nuclear positivity and IL-6 levels. Finally, HE4 expression was upregulated by TNF-α with elevated IL-6, and both protein levels were suppressed by combined administration of NF-κB pathway inhibitor and CFTR modulators in CFBE 41o− cells. In conclusion, CFTR dysfunction contributes to abnormal HE4 expression via NF-κB in CF.
Highlights
Cystic fibrosis (CF; MIM:219700) is a monogenic disorder that is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (MIM: 602421)
The same experiments in cystic fibrosis bronchial epithelial cell (CFBE) 41o− cells expressing F508del-CF transmembrane conductance regulator (CFTR) resulted in miniature currents that were insensitive to either FSK/IBMX activation or inhibition by CFTRinh172 (Figure 1B)
We consistently found that baseline human epididymis protein 4 (HE4) concentration was higher in F508del-CFTR CFBE 41o− cells than normal cells (p < 0.01) and was significantly reduced by LUM/IVA (p < 0.01) and TEZ/IVA (p < 0.001) treatment compared to FIGURE 2 | larger change in HE4 (A) CFTRinh172 (20 μM) caused elevated HE4 levels after 24 h while, in turn, improved CFTR function with FSK/IBMX or CFTR modulator reduced HE4 even in wild-type CFTR (wt-CFTR) CFBE 41o− cells (B) There were lower plasma HE4 values compared to baseline measured in CF subjects (n 10) after 1 month of Orkambi® in agreement with in vitro data with LUM/IVA (C) Data are expressed in mean ± SEM (n 5–6 samples/ condition)
Summary
Cystic fibrosis (CF; MIM:219700) is a monogenic disorder that is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (MIM: 602421). CFTR dysfunction leads to impaired ion transport across epithelial surfaces resulting in airway dehydration and thick mucus secretion associated with chronic respiratory bronchial inflammation/obstruction that is further compounded by chronic lung colonization with pathognomonic bacteria, such as P. aeruginosa (Rowe et al, 2005). In terms of the effect of CFTR modulators on cellular level of inflammatory processes, lumacaftor/ivacaftor (Orkambi®, LUM/IVA) treatment restores. This treatment with LUM/IVA enhanced airway epithelial repair and improved transepithelial resistance, irrespective of the presence of P. aeruginosa (Adam et al, 2018). In our recent clinical study, treatment with ivacaftor resulted in significantly lower plasma HE4 concentrations in three independent cohorts of CF patients already at 1 month following initiation of therapy (Nagy et al, 2019)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.