Abstract

The liver plays a central role in lipoprotein metabolism. In particular, very-low density lipoprotein (VLDL) is assembled in the hepatocytes and secreted into the blood circulation. The VLDL is then catabolized to low-density lipoprotein by lipoprotein lipase and hepatic triglyceride lipase. Obese subjects, especially those with visceral fat accumulation, are frequently associated with hyperlipidemia, non-insulin-dependent diabetes mellitus (NIDDM), and hypertension. The mechanism of hyperlipidemia in visceral fat obesity has not yet been elucidated. Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model of NIDDM, characterized by obesity with visceral fat accumulation, hyperlipidemia, and late-onset insulin resistance. To elucidate the mechanism of hyperlipidemia observed in OLETF rats, we focused on the production of VLDL by the liver and investigated hepatic messenger RNA (mRNA) levels of microsomal triglyceride transfer protein (MTP), acyl-coenzyme A synthetase (ACS), and apolipoprotein B (apo B), which play important roles in VLDL synthesis and secretion. In 6-week-old OLETF rats, in which insulin resistance had not been manifested, visceral fat weight was already higher and portal free fatty acid (FFA) and VLDL-triglyceride levels were elevated compared with the control rats. Hepatic ACS activity and mRNA levels, and MTP mRNA levels were also increased in OLETF rats, whereas apo B mRNA levels were similar; these results suggest that the enhanced expression of both ACS and MTP genes associated with visceral fat accumulation before developing insulin resistance may be involved in the pathogenesis of hyperlipidemia in obese animal models with NIDDM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.