Abstract

Immunologically induced fatigue was induced in rats by intraperitoneal injection of a synthetic double-stranded RNA, polyriboinosinic : polyribocytidylic acid (poly I:C). An injection of poly I:C (3 mg/kg) decreased the daily amounts of spontaneous running wheel activity to approximately 60% of the preinjection level until day 8. Quantitative analysis of mRNA levels demonstrated that interferon-alpha (IFN-alpha) and p38 mitogen-activated protein kinase mRNAs increased in the medial preoptic, paraventricular and ventromedial hypothalamic nuclei and in cortex on both days 1 and 8, while interleukin-1beta and an inhibitor of nuclear factor kappaB (IkappaB)-beta mRNAs increased on day 1, but recovered within a week. Serotonin transporter (5-HTT) mRNA also increased on days 1 and 8 after poly I:C injection in the same brain regions where IFN-alpha mRNA increased. The increased 5-HTT had a functional significance, because in vivo brain microdialysis revealed that an i.p. injection of poly I:C induced a decrease in the extracellular concentration of 5-HT in the prefrontal cortex; the decrease was blocked by local perfusion with a nonselective 5-HT reuptake inhibitor, imipramine. Finally, the poly I:C-induced fatigue was attenuated by a 5-HT1A receptor agonist but not by 5-HT2, 5-HT3 or dopamine D3 agonists. These findings, taken together, suggest that disorders in brain IFN-alpha and 5-HTT expression may be involved in the neuronal mechanisms of the poly I:C-induced fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call