Abstract

In this research, a malfunction diagnosis method based on the enhanced exergy concept is applied to quantify the anomalies' sources in a real integrated solar combined cycle system (ISCCS). A comprehensive parametric study is performed to evaluate the malfunction indicators and the overall performance of the power plant by varying the substantial operating parameters under single and multi-malfunction conditions. Then, the fast and elitist non-dominated sorting genetic algorithm (NSGA-II) is applied to maximise the net power and minimise the total exergy destruction rate of the system under a multi-malfunction condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.