Abstract

The excitonic effect in semiconductors is sensitive to dopants. Origins of dopant-induced large variation in the exciton binding energy (E(b)) is not well understood and has never been systematically studied. We choose ZnO as a typical high-E(b) material, which is very promising in low-threshold lasing. To the best of our knowledge, its shortest wavelength electroluminescence lasing was realized by ZnO/BeZnO multiple quantum wells (MQWs). However, this exciting result is shadowed by a controversial E(b) enhancement claimed. In this Letter, we reveal that the claimed E(b) is sensible if we take Be-induced E(b) variation into account. Detailed first-principle investigation of the interaction between dopant atoms and the lattice shows that the enhancement mainly comes from the long-distance perturbation of doped Be atoms rather than the local effect of doping atoms. This is a joint work of experiment and calculation, which from the angle of methology paves the way for understanding and predicting the E(b) variation induced by doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.