Abstract

Nonoxidative conversion of ethane to ethylene and/or BTX (benzene, toluene, and xylene) suffers rapid deactivation due to coke deposition. We report here the effects of phosphorus modification on the stability and activity of Mo/ZSM5 for nonoxidative conversion of ethane. The results show that the ethylene and BTX yield and stability are significantly enhanced upon modification with 2.5 wt.% P. NH3 TPD, pyridine FTIR, 1H MAS NMR, 27Al MAS NMR, 31P MAS NMR, 129Xe NMR, XPS, UV–visible diffuse reflectance spectra (UV–vis DRS), and nitrogen physisorption were carried out to understand the effects of P on the structure of Mo/ZSM5 and its correlation with catalytic performance. The presence of P reduces the acid strength and density, changes the channel system of ZSM5 by forming thermally stable SAPO-like interfaces with the framework Al, and improves the dispersion of molybdenum. Rapid deactivation still occurs on Mo/ZSM5 with 1 wt.% P due to the existence of denser silanol groups, more isolated Mo species, and reduced aperture size with little change in effective micropore volume. A higher P loading (2.5 wt.%) leads to less dense silanol groups and less reduced but stable molybdenum species, and simultaneously reduces channel diameter and internal volume. Consequently, the ethylene selectivity is enhanced and the formation of coke precursors is restricted, resulting in improved stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.