Abstract

Background/Aims: The phenolic abietane diterpene component of rosemary and sage, carnosic acid, may either induce or inhibit apoptosis of nucleated cells. The mechanisms involved in the effects of carnosic acid include altered mitochondrial function and gene expression. Human erythrocytes lack mitochondria and nuclei but are nevertheless able to enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the stimulation of eryptosis include oxidative stress, increase of cytosolic Ca<sup>2+</sup> activity ([Ca<sup>2+</sup>]<sub>i</sub>), and ceramide formation. The present study explored, whether and how carnosic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca<sup>2+</sup>]<sub>i</sub> from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to carnosic acid significantly increased the percentage of annexin-V-binding cells (2.5 µg/ml), significantly decreased forward scatter (10 µg/ml), significantly increased Fluo3 fluorescence (10 µg/ml), significantly increased ceramide abundance (10 µg/ml), significantly increased hemolysis (10 µg/ml), but significantly decreased DCFDA fluorescence (10 µg/ml). The effect of carnosic acid on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca<sup>2+</sup>. Conclusion: Carnosic acid triggers cell shrinkage and phospholipid scrambling of the human erythrocyte cell membrane, an effect paralleled by and/or in part due to Ca<sup>2+</sup> entry and increased ceramide abundance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.