Abstract

Rapid advances in nanomedicine have enabled potential applications in cancer therapy. The enhanced permeability and retention (EPR) effect is the primary rationale for the passive targeting of nanoparticles in oncology. However, growing evidence indicates that the accumulation of nanomaterials via the EPR effect could be more efficient. Inspired by our clinical observation of the Gap Junction connecpion between folliculostellate cells and pituitary adenoma cells, we designed a novel drug delivery system that targets tumours by coating folliculostellate cell (FS) membranes onto PLGA nanoparticles (NPs). The resulting FSNPs, inheriting membrane proteins from the folliculostellate cell membrane, significantly enhanced the EPR effect compared to nanoparticles without cancer cell membranes. We further demonstrated that mitotane encapsulation improved the therapeutic efficacy of mitotane in both heterotopic and orthotopic pituitary adenoma models. Owing to its significant efficacy, our FS cell membrane-coated nanoplatforms has the potential to be translated into clinical applications for the treatment of invasive pituitary adenoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.