Abstract

The spin-boson model usually considers a spin coupled to a single bosonic bath. However, some physical situations require coupling of the spin to multiple environments. For example, spins interacting with phonons in three-dimensional magnetic materials. Here, we consider a spin coupled isotropically to three independent baths. We show that coupling to multiple baths can significantly increase entanglement between the spin and its environment at zero temperature. The effect of this is to reduce the spin's expectation values in the mean force equilibrium state. In contrast, the classical three-bath spin equilibrium state turns out to be entirely independent of the environmental coupling. These results reveal purely quantum effects that can arise from multi-bath couplings, with potential applications in a wide range of settings, such as magnetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.