Abstract
The key to produce inorganic heterogeneous nanostructures, and to integrate multiple functionalities, is to enhance or at least retain the functionalities of different components of materials. However, this ideal scenario is often deteriorated at the interface of the heterogeneous nanostructures due to lattice mismatches, resulting in downgraded performance in most hybrid nanomaterials. Here, we report that there is a narrow window in controlling temperature in a Lewis acid-base reaction process to facilitate epitaxial alignment during the synthesis of hybrid nanomaterials. We demonstrate a perfectly fused NaYF4:Yb,Tm@ZnO heterogeneous nanostructure, in which the semiconductor ZnO shell can be epitaxially grown onto lanthanide-doped upconversion nanoparticles. By achieving a matched crystal lattice, the interface defects and crystalline grain boundaries are minimized to enable more efficient energy transfer from the upconversion nanoparticles to the semiconductor, resulting in both enhanced upconversion luminescence intensity and superior photoelectrochemical properties. This strategy provides an outstanding approach to endow lanthanide-doped upconversion nanoparticles with versatile properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.